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Abstract
We consider effective slip lengths for flows of simple liquids over surfaces contaminated by
gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the
liquid–bubble interface are important in limiting effective slip lengths over such surfaces. Using
an expression that interpolates between the perfect slip and finite slip regimes for flow over
bubbles, we conclude that for the bubble dimensions and coverages typically reported in the
literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%.
Further, we find that nanobubbles do not significantly increase slip lengths beyond those
reported for bare hydrophobic surfaces.

1. Introduction

Over the last decade, the development of a number of
new measurement techniques has led to the observation
of nanoscale, and even microscale, violations of the no-
slip boundary condition by simple fluids flowing over solid
surfaces [1–4]. In fluid dynamics, slip has historically been
described by Navier’s slip boundary condition [5, 6], which
states that at a solid boundary, z = 0 say, the slip velocity, u, is
proportional to the shear rate, ∂zu, i.e.

δ ∂zu|z=0 = u|z=0 , (1)

where the constant of proportionality, δ, is called the slip
length. Unfortunately, inconsistencies in the experimental
measurement of slip lengths have appeared frequently in the
literature [7, 8]. Some of these inconsistencies may be due
to poorly controlled microscopic factors that influence the
measured macroscopic slip length, such as contamination by
nanoscale air bubbles (or nanobubbles) [9].

On smooth, homogeneous surfaces, free from contami-
nants, the most recent experimental evidence suggests that slip
lengths are typically of the order of a few molecular diame-
ters, although on hydrophobic surfaces they may be as high as

20 nm [10]. However, for most surfaces, an experiment will
measure an effective or apparent slip, which emerges from the
interaction of microscopic chemical heterogeneity, roughness
and contaminants. On a rough, heterogeneous surface, both
z = z(x, y) and δ = δ(x, y) will vary spatially. If the slip
length varies over a length scale � and the characteristic scale of
the roughness is r , then experiments which probe the boundary
condition on some length scale L, where L � � and L � r ,
will measure a homogeneous effective slip length, δeff. Thus, it
is an important theoretical problem to determine the effective
slip length given z = z(x, y) and δ = δ(x, y).

Experimentally, there is considerable evidence that the
effective slip length can depend strongly on the scale of the
heterogeneity. The largest slip lengths that have been measured
occur for flows over superhydrophobic surfaces when the fluid
does not wet the substrate [11, 12]. Such flows are essentially
lubricated by a layer of air with drag only occurring at the
few points of the surface where the flow makes contact with
the substrate. In this case one can think of the substrate as
consisting of two slip lengths, the first, δs, corresponding to
flow over the points in contact with the substrate, and the
second, δg, to flow over gas regions between the points of
contact. Experiments where the lateral spacing � between the
points of contact with the substrate is varied find that the slip
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length is proportional to � if the area of contact between the
liquid and the solid substrate is held constant [12].

For similar reasons, it has been suggested that surfaces
contaminated by nanobubbles may also exhibit large effective
slip lengths [7, 8]. Nanobubbles are an interesting phenomenon
in their own right, which have been characterized relatively
recently using atomic force microscopy [9, 13–15]. In [15],
for instance, AFM measurements revealed bubbles covering
∼15% of the solid surface. They are typically very flat
(tens of nanometres high but microns in diameter), so their
Laplace pressure remains close to atmospheric. It has been
suggested that they may occur quite frequently in polar liquids
in contact with hydrophobic substrates if the liquid has not
been carefully degassed [9]. However, slip lengths over
very thin nanobubbles, whose height is comparable to the
molecular mean free path in the bubble [15], are likely to be
smaller than slip lengths over the vapour regions trapped in
a superhydrophobic surface. Estimates for slip lengths over
nanobubbles are of the order of microns [16, 17], rather than
the hundreds of microns over the confined vapour regions on
superhydrophobic surfaces [18]. In this case δg ∼ �, which
suggests that the effective slip length might be substantially
less than that for superhydrophobic surfaces.

From a theoretical point of view, effective slip lengths
can be determined numerically from solutions of the
Navier–Stokes equations with a heterogeneous slip boundary
condition [19], by using mesoscale methods such as lattice
Boltzmann simulations [20], or by atomistic molecular
dynamics simulations [21]. Alternatively, in cases where
exact or approximate analytic solutions can be found for flows
with heterogeneous boundary conditions, one can obtain an
effective slip boundary condition by taking the appropriate
macroscopic limit. For instance, there are solutions known for
flow over or along stripes of alternating shear-free (δg → ∞)
and no-slip (δs → 0) regions [22, 23], which have been
used to derive effective slip lengths [24]. In this case, it is
found that the effective slip length scales as �, the wavelength
of the periodic patterning, if the stripe area fraction is held
constant. More recently, effective slip lengths have been
determined for random distributions of shear-free disks on a
non-slip substrate [25], where again δeff ∼ � if the disk area
fraction is held constant. These results are consistent with the
current experimental evidence for slip over superhydrophobic
surfaces described above [12]. However, as discussed above,
for surfaces contaminated by nanobubbles where δg ∼ �, the
effects of finite slip may be important in determining effective
slip lengths.

Our recent work has focused on predicting effective slip
lengths for surfaces with patterned finite slip 0 < δ(x, y) <

∞ [26, 27]. As they concern finite slip lengths, our results
may be useful for evaluating effective slip lengths over surfaces
with nanobubbles, if the slip length over the bubble itself
cannot be regarded as infinite. In this paper our goal is to
use the recent AFM characterizations of nanobubbles, together
with our previous results, to determine whether the finite slip
length of the fluid over a nanobubble is an important factor
to take into account in determining effective slip lengths.
We begin by reviewing estimates for slip over nanobubbles,

before considering the effective slip length for a surface
covered in nanobubbles. We then give an expression for
slip over nanobubbles that incorporates the effects of finite
slip and discuss whether it is important for comparison with
experimental data.

2. Slip length for flow over a nanobubble

The bubbles recently observed by Zhang and co-workers
[14, 15] on OTS silicon in water have been found to be
several tens of nanometres high and of the order of a micron
in diameter. This gives the bubble a radius of curvature
of the order of several microns, which is large enough to
ensure that the pressure within the bubble remains close to one
atmosphere. At these pressures the mean free path of the gas
molecules in the bubble (20–30 nm) will be comparable to the
height of the bubble. From the images available in [14, 15],
the spacing between bubbles is typically several microns or
more, and the total coverages seen were typically 10–20%. In
contrast, the bubbles observed by Simonsen et al [13] in water
on polystyrene were roughly 7 nm in height, 70 nm in radius,
and covered approximately 60% of the surface.

For a gas layer in the Knudsen regime, where the mean
free path of the gas is more than the layer height, De
Gennes [17] has given an estimate of the slip length for a liquid
flowing over the layer. In this case, the viscous shear in the
liquid is balanced by a thermal friction in the gas, giving a slip
length of

δg � μ

ρvth
, (2)

where vth is the thermal velocity of the gas molecules ∼
√

kT
m ,

ρ is the gas density and μ is the liquid viscosity. At 300 K, for
molecules of air, vth ∼ 300 ms−1, so for water (μ = 10−3 Pa s)
slipping over an air layer at one atmosphere this gives an
estimate of δg ∼ 3 μm.

At the opposite extreme, where the gas layer is much
thicker than the mean free path in the gas, continuity of stress
across the liquid–gas interface means that there will be a slip
length of

δg �
(

μ

μg
− 1

)
t (3)

experienced at the interface, where μg is the viscosity of the
gas, and t is the height of the gas layer. For water flowing over
air μ/μg ∼ 50, so for a layer thickness of 20 nm δg ∼ 1 μm.

For gas bubbles of tens of nanometres in height, with
mean free paths of a similar magnitude, the slip length will fall
somewhere in between these two regimes. However, the two
estimates give similar magnitudes for the slip length of around
several microns. Thus for the results of Zhang et al the slip
length at the nanobubble surface is comparable to the spacing
between bubbles. For the bubbles observed by Simonsen et al,
where the height of the bubbles was found to be less than
the estimated mean free path, the slip length over the bubbles
should still be several microns or more. However, in this case
the slip length is much greater than the spacing between the
bubbles (� ∼ 100 nm).
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3. Effective slip length for flows over
nanobubble-covered surfaces

We now consider the problem of determining the effective slip
length for a simple shear flow over a surface covered with
nanobubbles. We will consider a periodic patterning of bubbles
of radius a in a square lattice of cell length � on the surface
z = 0. Thus, the local slip is a periodic function of the xy
coordinates on the plane z = 0:

δ(x, y) =
{

δg,
√

x2 + y2 � a

δs, a <
√

x2 + y2,
(4)

where x, y ∈ (−�/2, �/2) and δ(x + �, y) = δ(x, y + �) =
δ(x, y). As discussed in section 2 δg ∼ 1 μm, whereas we
expect the slip length over the bare solid surface δs to be 20 nm
or less.

A simple shear flow over the surface induced (for instance)
by a moving plate at some distance W � � from the
nanobubble-covered surface will be disrupted near the surface
by the heterogeneity in (4). However, for Stokes flow, the
perturbations in the flow induced by (4) will decay away from
the boundary (z = 0) on a length scale � [26]. Thus the
moving plate will experience an effective slip. If we non-
dimensionalize (1) by the length scale � (x̂ = x/�, ŷ =
y/� and ẑ = z/�) and insert (4) we end up with boundary
conditions on ẑ = 0 of the following form:

(
δg/�

)
∂ẑu|ẑ=0 = u|ẑ=0,

√
x̂2 + ŷ2 � a

�

(δs/�) ∂ẑu|ẑ=0 = u|ẑ=0,
a

�
<

√
x̂2 + ŷ2.

(5)

Clearly, to first order in δs/�, the second condition on a/� <√
x̂2 + ŷ2 is no slip. In [25], the assumptions of no slip

(δs � �) and perfect slip (δg � �) were used to derive an
expression for the effective slip length over a surface with
randomly dispersed nanobubbles. This gave the expression
δid = (8/9π)φa/(1 − φ) (subscript id for ideal) for the
effective slip, where φ is the area fraction of the substrate
covered by the bubbles. However, based on our estimates
above, δg � �. So one might question whether the assumption
of a perfect slip boundary condition (i.e. δg � �) over
the bubble region is valid in this situation. In our recent
work [26, 27], one of the cases studied was the limit in which
δs � � and δg � �. In these limits, we were able to obtain
perturbative solutions to the Stokes equations, which gave an
effective slip length of δf = φδg + (1 − φ)δs (subscript f for
finite) to first order in δs/� and δg/�. This expression was
also observed to hold in this limit in numerical simulations by
Cottin-Bizonne et al [19].

It is not immediately clear how to interpolate between the
two limiting expressions δf, which should hold when δg � �,
and δid, which should apply when δg � �. However, based
on numerical results, Ybert et al [18] have proposed a heuristic
expression that has been observed to approximately bridge the
two limits, δg � � and δg � �, as follows:

1

δeff
= 1

δf
+ 1

δid
. (6)

Currently there is no rigorous derivation for this expression.
Nonetheless, inserting the expressions for δf and δid above, we
find that

1

δeff
= 9π(1 − φ)

8φa
+ 1

φδg + (1 − φ)δs
. (7)

From this expression one can see that the finite slip lengths
become significant when δg ∼ a/π(1 − φ) or when δs ∼
(1 − φ)2a/πφ. One interesting feature of this expression is
that it suggests that the criterion δg � a (rather than δg � �)
is a better estimate of the magnitude of δg for which the finite
slip length is important.

We can use this result to estimate the value of δg when
finite slip effects will become important: for the bubbles
observed by Zhang et al we obtain a value of ∼300 nm, and
for those of Simonsen et al ∼60 nm, compared to values of
δg ∼ 1 μm for slip over the bubbles themselves. Thus, in both
cases, it appears that one can neglect the effects of finite slip
over the nanobubbles, i.e. δeff � δid as δs � a/πφ. If we
then use the result of [25] to compute the effective slip length
for the bubbles of Zhang et al (φ ∼ 15% and a ∼ 500 nm),
then we arrive at an estimate for the effective slip length of
δid ∼ 25 nm. Likewise, for the bubbles of Simonsen et al [13]
we obtain δid ∼ 30 nm. In both cases, the effects of finite slip
over the nanobubbles reduce the effective slip lengths by only
10%.

4. Discussion

Based on our analysis, for the nanobubbles described by Zhang
et al in [14, 15] and by Simonsen et al in [13] the effects of
finite slip over the bubble do not substantially influence the
measured effective slip length. Instead, the order of magnitude
of the effective slip length should be well described by the
expression for the ideal slip length of a surface with no-slip
and perfect slip regions. Using the expression from [25], one
obtains estimates of the slip length of the order of several tens
of nanometres for the sizes and densities of bubbles reported
in most experiments. Surprisingly, these values are not
significantly larger than those reported for bare hydrophobic
surfaces [10]. This suggests that the presence of nanobubbles
does not significantly enhance slip over hydrophobic surfaces.

Finally, we note that in the case where δs and δg are much
larger than � the expression

1

δeff
= (1 − φ)

δs
+ φ

δg
(8)

has been demonstrated to hold [19, 26]. Again, one can ask
when this expression should be used rather than the ‘ideal’
slip length expression. In this case, numerical calculations
indicated that this expression was well obeyed down to slip
lengths δs ∼ a. Thus we would expect that finite size
corrections due to this expression may become important for
nanobubbles with radii of the order of a ∼ δs, which may be
as large as 20 nm on hydrophobic substrates.
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5. Conclusion

We have estimated the effective slip length for the nanobubble-
covered surfaces characterized by Zhang et al [14, 15] and
those characterized by Simonsen et al [13]. We have argued
that, although the slip lengths over the bubbles themselves
are comparable to the bubble spacing (δg ∼ �), the effects
of finite slip over the bubbles may be neglected in this
case. We conclude that such surfaces are likely to exhibit
effective slip lengths of only several tens of nanometres, which
is comparable to slip lengths measured on uncontaminated
hydrophobic surfaces. In other words, nanobubbles do not
significantly increase slip over hydrophobic surfaces.
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